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ABSTRACT. The nonprincipal subdeterminants of a normal

matrix satisfy certain quadratic identities. In this

paper, these identities are used to obtain upper bounds

on such subdeterminants in terms of elementary symmetric

functions of the moduli of the elgenvalues. The same

analysis yields lower bounds on the spread of a normal

- -. .. . . . ~matrix and on the Hilbert norm of an arbitrary matrix.

-.- -~1. STATEMENT OF RESULTS

Let , be n complex numbers. The totality of n-square normal

matrices with these numbers as eigenvalues is the set of all matrices A of

the form

(1) A = U*DU

-j-.~ where U is unitary and D = diag(Ni),....N n). It is well kown (1, p. 237]

that f or afixed inee ,1 < ,tetotalityW(A ofmsur

principal subdeterminants of all A defined by (1) is a region in the plane

contained in the convex polygon

(2) P MO it~~l X'~) " £

.~~~: ~The notation in (2) is this: ,n is the set of all (n)inersqecs
w having domain (1,... ,M) and range contained in 1,.,nand satis-

tying -(l) < w(2) < ... < (); XI denotes the convex hull of the indicated

products. Thus

~ - The work of the first author was supported by the Air Force Office of Scienti-
fic Research under Grant AFOSR 4962oy8-c-0030.
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92 Marvin Marcus and Ivan Filippenko Avaland/or

or in words, ifAi omlmti iheigenvaluca 1" "'
rn-square principal subdeterminant of A lies in the polygon P m N.it is

aloknown thtin contrast to the case m -1 when W1 (1X) is the numerical

range of ani A, it is not generally the case for I < m< n- 1 that W ())
M

-- . is a convex set [4].
The situation for rn-square nonprincipal siubdeterrninants is remarkably

different. To fix the notation, let k,m be fixed integers, I < k < a -C n,

and let W km(N) denote the totality of rn-square subdeterminants of the

matrices A in (I.: which have precisely k main-diagonal elements in common

with A. More precisely,

-- (4) W k,m (N) = [det A[ al 5) : c, 'qmn' I imr a n im8 B k, A defined by (1),

where irn C is the range of a and A[alj3 is the rn-square submatrix of

-.------ * ..- A lying in rows c(l),.. .,ce(m) and columns ~(). ,()of A. A slighit

modification of an argument found in D3, P- 2201 shows that W km (X) is a

closed circular disc centered at the origin. Let r k,M (N) denote the radius

of this disc. Also let

denote the a-th elementary symmetric polynomial in i1~)**, )~ i.e.,

i=l M
The following is the main result of this paper.

THIDOW 1. nf :P 4, ,>2, and k < m-2, then

2 r(N~)r if kCm - 2
kkrn

In words, let A be a normal matrix with eigenvalues W n 1 4n)4

.:...Let B be an a-square submatrix of A having precisel.y k main-diagonal
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E(INI)
M 4if k m 2.

Recall that the spread of A (5, 61 is the niumber

s(A) =max JA

We have the following result.

COROL)LAR~Y 1. If 2< m< n and the rn-square submatrix B of A has
.. no main-diagonal elements lying on the main diagonal of A, then

.9, .. () (A) {4(2(m. + 1)(-)) Idet B1 l/m

L2qT(n(n 1 ))-1/2 Idet B11/2

In the following corollary, A is an arbitrary n-square matrix (n I)

Let dm be the greatest rn-square subdeterminant of A (in absolute value),
and let JJAil be the Hilbert norm of A, i.e., the greatest singular value

of A.

-- -COROLLARY 2. If 2 _ .<n then

-2.+ 1) (2) -) m

11II max I

__________The remainder of the paper is divided into two sections. In Section 2,

. .. . .a combinatorial lemma about sets of sequences is established to be used ILa~er

______ - - -in analyzing some consequences of the quadratic PlUcker relations for sub-

. determinants. In Section 3, the proofs of the above results are given.

.9-. .. .2. A COBNTRA LEMM4A

9Let r mndenote the set of all. nm integer sequences with domin
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(,.,)and range CL..n.Let a,O E Qm~ (I< m < n), nd let

s,t C L. .il Define ajs,t :1] to be the sequence in r n obtained
n,n

from az by replacing a(s) with 13(t):

cfs,t :8] (zl,..asl,(trsl,..ai

Similarly, ' [t,s :ac] denotes the sequence in r obtained from 8byM, n
replacing 13(t) with ao(s):

13[t's :C1j1 (()..8tlas,(~)..8i)

As s and t vary over the set l,.inthey give rise to the

-... . .following two lists of sequences in r
in,n

afs,t 58] list 03(t's :a] list{ 1 13[l,1:a]
Block s~l ali 8 Enla.

______atom____ a[ s,1 : (1, 8 : a]

General Block 5 s xs~n8
A~~~o asi' 0 O s all

t afm,l :8] 8lin : a]

Block s-rM

atm,m :0] 8(in'm a]

We shall refer to this array of sequences as "the twin lists." As indicated,

the twin lists are arranged in mn "blocks" (corresponding to sa

each block has two colms (corresponding to a and 8), each of which con-

sists of mn sequences (corresponding to t p ,. m).

.1 if 7 rinn we shall say that Y appears in the twin lists if the
sequence n apars in the array for some permnutation a e ,~
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LEM44h. Sups 2 < m < n, and consider the sequences

and

B = (1,. ..,k,m+l,. ..,2m-k)

where 0< k < ?h-1.

(i) If k m - 1, then a and 13 appear in every block in the twin

lists for a and 8

(ii) If k <m -2, then

.~. .. .. .. (a) indeach of blocks s 1 3,.. .,k in the twin lists, both a

(b) in each of blocks s =k+l,.. .,m in the twin lists, neither

cc nor B appears in rows k+l,..., m;
(c) in each of blocks s = k+l,.. .,m in the twin lists, each of

the first k sequences on the left involves repeated integers;

(d) in the totality of rows k+l..., m in blocks s = l,.m

in the twin lists,* no sequence appears more than once if

k < mi - 2, and the sequences which appear do so exactiy

twice if k = m 2.

Proof. As an introduction, let us write out the general block in the

twin lists for a and J3:

oi[s't :81] 3(t's :a]

\(1, ... ,s-l,l,s+l,...,M) (,,.,~~,.,mk

Block (1 '2, 1~~, 2m-k)Ll (1.. slmkm),..m (l2 ...,k,a~,...,m-)

() Suppose k m 1. Observe that if a <a m 1, then block a in

the twin lists for a and 13 has the form:

R -
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(1,,. s' .l

* .. .(Notice that since k mn 1, we have 0 = (1,... ,m-lsl. Thus a

--- appears as the s-th sequence on the left, and 10 appears as the s-th

-sequence on the right. Now block s mi in the twin lists for cl and0

has the form:

.................................

and we see that a appears as the in-th sequence on the right, while 03

appears as the in-th sequence on the left. This establishes (i).

- ~(Ui) Suppose k < m,-2.

- (a) If s e [1,...,k), an inspection of block a in the twin

lists immditely shows that a appears as the s-th sequence on the left,

and 13 appears as the s-th sequence on the right.

(b) Let s e (k+l,. .. ,in]. Then block s in the twin lists for

a and 03 has the form:

position a

(8).,~~+2..,mk

*row

V.
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Observe that each sequen2e in rows k+l, ... ,i in block s involves integers
greater than m. Thus 0: does not appear in rows k4l,. .. ,m in block s.

- ml

-00.Next, the (k+l) -st sequence on the right in block s does not involve

m + 1,. the (k+2)-nd sequence does not involve m + 2, and so on until

finally the m-th sequence does not involve 2m - k. Thus 13 does not appear

on the right in rows k+l,...,m in block s. Dow if z" < m - 1, then every

sequence on the left in rows k+l,...,m in block s involves m, and hence

8 does not appear on the left in these rows. If s m i, then rows

k+l,...,m in block s have left-hand side of the form

(l,..,:k ..... nl,2|]k

and each of these sequences involves k + 1. But does not involve k + I

since k.< m. - 2, so again 8 does not appear on the left in rows

Sk+l,...,m in block s. This completes the proof of (b).

(c) It is clear from the array (8) in the proof of (b) that if

s e "k+l,.. . ,i-), then each of the first k sequences on the left in block

s involves repeated integers.

(d) Let us examnine the array (8) in the proof of (b) both for a fixed s

and for different values of s E ik+l,... ,m).

..... First, it is obvious that for a fixed s e (k+l,. . .,m), the sequences

on the left in block s are all distinct, as are the sequences on the right.

Next, let s,s' e (k+l,...,inj, s s,, and observe that s does not

. . occur in any sequence on the left in block s, whereas s does occur in

every sequence on the left in block se. Thus no sequence on the left in

block s' appears on the left in block a. It follows from the preceding

paragraph that in the totality of blocks s f k+l,...,m in the twin lists,

no sequence appears more than once on t ie left.

. . . .. .... Again, let s,s' (k+l,...,M, a at, and observe that s occurs in

every sequence on the right in block s, whereas s does not occur in any

sequence on the right in block a'. Thus no sequence on the right in block

s' appears on the right in block s. As before, it follows that in the

totality of blocks a k+l,..., in the twin lists, no sequence appears more

s o r e e
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than once on the right.

If s e (k+l,. .. ,m-l], then each sequence on the left ilL block 8

involves ms and hence does not appear on the right in block s' for any

se fk+l,-...,rn-l). Also, each sequence on the right in block s = ms

- .- ~-. ...... involves ms and hence does not appear on the left in block mn.

Now suppose k < m -2. We wish to show that in the totality of rows

k+l,. . . , in blocks s =k-i-,.. .,in in the twin lists, no sequence appears

more than once. By the above observations, we need verify only that no

sequence on the left in rows k+l,.. .,m in blocks s = k-i-,.. .,m-l appears

on the right in rows k-i-,... ,m in block ms, and that no sequence on the

. .. left in rows k+i,. .. ,m in block ms appears on the right in rows

k-i-,... ,m in blocks as k+l,. ..,ai-l. We reproduce the twin lists for a

and f3, omitting blocks 1,...,k and rows 1,...,k in each of the blocks

s

Bloc a, (1,.. k,. .,ml,...,-l,m) (l,.. .,k,s,in+2,.. .,21n-k)

*./ ~ k+l< s m-2;

t0, .k,,...in2m,.n..,. ,,-lii-, .,mk

Block s m-1;

______________________ U ...)k,. ..,m-2,m-l,m) (1,. ..,k,ini,m+2,. ..,ml)

Block s=m;

Inspection of this array shows that each sequence on the left in rows

k+l,.. .,ta in blocks a -k-i-,.. .,m-2 involves ms - I and hence does not

appear on the right in block mn; each sequence on the left in rows

k+l,. .. ,m in block ms - I involves ms - 2 and hence does not appear on~

the right in block ms (since k < ms - 2); each sequence on the left in rows

k-i-I,.. .,m in block ms involves ms - I and hence does not appear on the

right in rows k-i-I,... ,m in blocks a - k-i-I,.. .,ia-2; each sequence on the

- .. -. left in rows k-il,...,in in block is involves in - 2 and hence does not

appear on the right in rows k-i-I,...,Ia in block mn - 1. This completes the
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required verification and establishes the assertion in (d) for the case

k < m - 2.

Finally, suppose k = m - 2. Then if we consider the totality of rows

mi-1 (k+l1),m in blocks s =m -1, m in the twin lists for a~ and 13,

Block s = m-1; [(,... ,m-2,m+l,M) (1,.. .,m-2,m-l,m+2)

t =m-l'm

Block s m (l,...,m-2,m-l,m+l) (l,...,m-2,iM+2)

t =m-l m*

we see immediately that every sequence which appears does so exactly twice.

*This establishes the assertion in (d) for the case k = m -2. 0

-'3. PROOFS

Proof of Theorem 1. We shall prove the equivalent statement that if

U e C is any unitary matrix, then

Idet(UAU)(a8]I 2(m -C 1 i ~

±Em(~I ~ ' if k = m 2

We begin by making the following two reductions. First, we may assume that

A is diagonal,

A = diag(N1 ,..N

Second, by effecting an appropriate permutation similarity transformation on

the matrix U Awe may assume

* ~ ... ~a=(1,2,...,m) and 1 = (l,...,k,m+l,.... 2m-k)

Fix a matrix U e Un(C), and let

6= Idet(U AUMCa(131( J Cm(UAU), I

weeC(X) is the rn-tb compound matrix [1, p. 1271. For each v e

let'
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We()* det ?J~vh? 2' er m 'n

Wehave

CCAU () C(A) C(U)cc m3 clV a 1 ,V 51 V 4m

VE

V r-m

whr v Nv(1) Xv(m) Thrfore,

Now the quadratic Pl'dcker relations [2, p. 10] imply that for each v e a '

and any sat,.r , l

S(10) pv(c)p,(f) = p,(a[s,t 61) p'(s(t'sa]
t=1

Taking absolute values in (10), applying the triangle inequality, and summing

both sides on s = k+l,...,m, we obtain, for each v E Qmn

m-ks=k+l t=l

..~''-rCombining (9) and (11) yields

-in-k n '
1 S=k+l t j~csl

and it follows from part (ii)(c) of the lemma in Section 2 and the arithmetic-

geometric mean inequality that

Im -
M

_____ 's=k+1 t~k+l

Le sidne th isoaunitar mtrixo isd the brcts coind h (eco. eneqult

In (12) b
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for each v e Qltn2 the sum of the squares of the moduli of the elements

e . in row v of Cm(U) is 1. It follows fran parts (ii)

(b), (d) of the lemma that

(:13) + lp(n)1 + jI (f3)1 < 1 if k < m - 2

S,t

The remainder of the argument consists of a calculation performed in two cases.

Case 1 k< m 2. From (12) and (13) we conclude that

<13 2-( t} 7k vp ( P() 12_ +f 1< -,3)2,

SPs)1+ (1i(a) 1 f 12

: -2(1-)) + v p BI

- 1 LIn*(1-( I(IPU(a)1 Pv() 1
2m- k

."- -.

" .Ii I (by (9))

Therefore

. . . .+ k -2,k7 I

'so that Q~

< 2(m-k+l) IN = 2(m-k+x)
vCQ%,n v 2mkl

Case II: k = m - 2. From (12) (with k m - 2) and (l4) we conclude

thatthat A< I 1 2(1 - (Ipv(c)I + IjP(5)1)

S:... - -.. " 1 [ I. - B I,.,,(,.I.(), +,., l)

2g Z IN,I IN 2 Il ( oIp /)12 lv 13lvq"in V",n

< .'"- -2

-v. ve.
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- 2 KI -(by (9))

The ref ore

-2

so that

Since A~ Idet(UAU)[alI0)I, this completes the proof of the theorem. 0

Proof of Corollary 1. Assume first that 2 < m < n, and let a,13 e m

be sequences such that

imcra lim = so that B A(rI80.

For any t eC, A -tI 0  e M ( C) is a normal matrix with eigenvalues

N -? -t X n ,X*t, and since im a n im 0 we have

(A - tI n)[alp) AfaIp)

It follows by Theorem 1 that

jdet A~alIll Idet(A - UtI0)(oi~1

<....2(m .1 ) - 2(m +17

Since this is true for each t e E, we have

* *~~~ ~~ (15) ~~Idet Acs] li'rI)jti m
2(m + 1)

Now it is known []that any n points In C are contained in a
disc of radius

________,__ s!n(A)

if t 0 is the center of this disk, then certainly
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s(A)

and hence

(16) min max - sA
te C Lci<n s3

The inequalities (1.5) and (1.6) together imply that

jdet A~aJ1311 2(m +1

whence

Since the sequences a,D e t' were arbitrarily chosen subject to the condi-

tion im ct n im 8 3 we conclude that

[2(m + 1)13./rnwMIet~IH
inCe)EQm,n

iii a n im p

whenever 2 < m < n, and the inequality for the first expression on the

right in (7) is established.

_______________________The proof of the inequality for the second expression on the right in

(7) is virtually identical, the sole modification being that the application

of Theorem 1 involves the case m - 2 rather than m > 2; this has the

effect of replacing the constant 2(m + 1) by 4 throughout. 0

* Note that if A is hermitian (or skew hermitian), it is clear that

sA)
* ~~. ~.(17) min max - 2

teC l<i~n

Using (17) in place of (16) in the proofs of (7), we obtain the following

specialization of Corollary 1.

If A is hermitian or skew hermitian and the m-sQuare submatrix B of

A has no main-diagonal elements lying on the main diagonal of A, then

(18) s(A) 2 2(2(m + 3.)(~.~ Q ~ tBlm
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and

(19) s(A) 4,F2 (n(n - ))L2Idet B11/2

Proof of Corollary 2. The matrix

x= M 2n(c)

is hermitian with eigenvalues ±a 1,... ,iOr, where

are the singular values of A. Applying the inequality (18) to A, we see

that if 2 <m <n then

-s(K) 2 2[2(m +)) max I det X(,I w]ll/mn

im 7 flim w

Since s(X) 2ax,, the inequality for the first expression on the right in
Corollary 2 follows. In the same way, application of (19) to X yields the

ZZ inequality for the second expression on the right in Corollary 2. 0
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